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We discuss in this review recent progress, especially by our group, on linear
scaling algorithms for electronic structure calculations with numerical atomic
basis sets. The principles of the construction of numerical basis sets and the
Hamiltonian are introduced first. Then we discuss how to solve the single-electron
equation self-consistently, and how to obtain electronic properties via
post-self-consistent-field processes in a linear scaling way. The linear response
calculation with linear scaling is also introduced. Numerical implementation is
emphasized, with some applications presented for demonstration purposes.
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1. Introduction

Ab initio electronic structure calculations based on density functional theory (DFT) [1–3]
or quantum-chemical approaches (Hartree–Fock theory and post-Hartree–Fock methods)
[4] have been successfully applied to both molecular and condensed-matter systems.
During the past few decades, with the rapid increase of computational power, it is now
possible to study the electronic properties of systems containing many thousands of atoms.
However, achieving a favourable scaling of the computational time with respect to the
increase of system size is still essential to reach significantly larger systems in the near
future.

The traditional way to calculate the ground state energy is to solve the eigenvalue
equation, which has a computational cost scaling of O(N3) [5], where N is the number of
atoms in the system under consideration. Such a N3-scaling presents a serious bottleneck
to deal with systems with a large number of degrees of freedom. At best, we hope the
computational time increases linearly with the system size. Algorithms reaching this goal
are called linear scaling or O(N ) algorithms.

The fundamental principle behind almost all linear scaling algorithms is Kohn’s
nearsightedness principle [6]. For a quantum mechanical system within an external
potential �(r0), its local properties do not see a change of the external potential if the
change is limited to a distant region. This principle leads to the sparsity of the Hamiltonian
matrix [5,7]. In practice, the sparsity is achieved by dropping matrix elements less than a
threshold or by using strictly truncated atomic basis sets. It is demonstrated that dropping
small matrix elements may cause numerical instability [8]. As a result, using strictly
truncated atomic basis sets is a better choice. Analytic atomic orbitals, such as the
Gaussian-type orbitals (GTOs), typically have a long tail. On the other hand, numerical
atomic orbitals (NAOs) can be strictly truncated by applying a confining potential.

There are numerous NAO-based DFT implementations [8–19] in the local density
approximation (LDA) or generalized gradient approximation (GGA). An NAO basis set
has also been implemented in Hartree–Fock calculations for molecular systems [20–26].
Using the locality of NAO, various O(N ) algorithms have been proposed to deal
with systems containing thousands of atoms [8,27–33]. In the present paper, we focus on
O(N ) numerical algorithms to calculate electronic structures of molecules and periodic
systems.

The outline of this review is as follows. The discussion begins with the construction of
NAOs (Section 2), which are typically the product of a numerical radial function and a
spherical harmonic. The ways to generate radial functions can be divided into two
categories: the all-electron methods and pseudopotential methods. With an NAO basis set
ready, the first task for a DFT calculation is the construction of the Hamiltonian
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matrix (Section 3), which typically involves real-space grid operations or Fourier space
operations for two-centre integrals. Since the Hamiltonian depends on the charge density,
the single-electron problem needs to be solved self-consistently. There have been numerous
O(N ) algorithms developed to update the density matrix in the self-consistent field (SCF)
cycles. In Section 4, we introduce several representative ones, including the
trace-correcting scheme and the trace-resetting scheme. Besides a linear scaling SCF, it
is also desirable to have O(N ) scaling for other post-SCF tasks in electronic structure
calculations, such as the calculation of the energy gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and the
construction of localized orbitals. A detailed description of this kind of method to obtain
properties beyond the total energy is given in Section 5. In Section 6, we discuss the
response theory based on the locality of the density matrix, i.e. linear scaling density
matrix perturbation theory (DMPT) [34]. Section 7 concludes the review.

2. Numerical atomic orbitals

At the very beginning, NAOs were developed to calculate electronic structure for atoms
[35]. Then, it is found that the one-particle wavefunctions of molecules can be well
described by linear combinations of numerical atomic orbitals (LCAO). In the chemistry
community, the use of atomic orbitals, e.g. GTOs [36–41], is very popular. In solid-state
physics, LCAOs have also been regarded as an efficient approach to extend the
applicability of DFT to realistic large systems. For example, Sankey and Niklewski [9]
have used the slightly excited pseudo-atomic-orbitals to derive the tight-binding
Hamiltonian matrix in real space. In the last few decades, great efforts have been made
to construct efficient and accurate localized orbitals [13,17,18,42,43] as a basis set in O(N )
calculations.

An NAO for atom I, located at RI is the product of a numerical radial function and a
spherical harmonic:

�IlmnðrÞ ¼ ’IlnðrIÞYlmðr̂IÞ ð1Þ

where rI¼ r�RI, and the index n denotes the orbitals with the same angular dependence,
but different radial dependence. l is the orbital angular momentum quantum number, and
m is the magnetic quantum number.

The radial part of the numerical atomic orbital ’Iln(r) is calculated by the following
equation:

�
1

2

d2

dr2
rþ

l ðlþ 1Þ

2r2
þ Vl ðrÞ þ Vcut

� �
’IlnðrÞ ¼ �l’IlnðrÞ ð2Þ

where Vl(r) denotes the electrostatic potential for orbital ’Iln(r), and Vcut ensures a smooth
decay of each radial function to be strictly zero outside a confining radius rcut.

There are many kinds of methods to construct radial NAOs. For example, SIESTA [8]
uses an energy shift to apply different spherical confinements in its minimal basis set,
following Sankey and Niklewski [9], then splits the norm for multiple-zeta, and constructs
the polarization part by applying an electric field; FHI-AIM [33] uses a smooth analytical
shape potential to get a minimal basis set, and then additional NAO basis functions are
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constructed by optimizing from a large pool of ‘candidate’ radial functions; OpenMX
[32,44,45] uses the eigenstates of an atomic Kohn–Sham equation with a confinement

pseudopotential as the primitive orbitals, and then variationally optimizes the NAOs of
each atom in a given system based on the force theorem; and DMOL3 [19,46] uses exact
LDA spherical-atom orbitals in the basis set. We categorize them into two classes:

all-electron NAOs and pseudopotential NAOs. In the following, we will use FHI-AIM and
SIESTA as two examples to describe them.

2.1. All-electron numerical atomic orbitals

In all-electron NAOs, a confining potential is used to get the localized orbitals. Two kinds
of confining potential have been discussed by several authors, i.e. the simplest ‘hard-wall’

potential as used by Sankey and Niklewski [9], and smooth analytical shape potentials
[43,47]. In the FHI-AIM framework [33,48], the following smooth analytical potential
is used:

VcutðrÞ ¼

0 r � ronset

s � exp
w

r� ronset

� �
�

1

ðr� rcutÞ
2

ronset 5 r5 rcut

1 r � rcut

8>><
>>: ð3Þ

where the parameters are set as s¼ 200 Hartree and w¼ 2.0 Å. The suggested value for
ronset is 3.5 Å for light elements and 4.0 Å for transition metals. The confinement potential

Vcut and its impact on the tails of an atomic Au 6s radial function and its second derivative
are illustrated in Figure 1.

Figure 1. [Colour online] The Au 6s radial function generated with different confining potentials
Vcut(r) by FHI-AIM. Upper panel: Basis set confining potentials Vcut(r) as defined in Equation (3),
for two different settings of ronset and w (s¼ 200 Hartree in both cases). Lower panel: Influence of
Vcut(r) on the tails of the Au 6s radial function ’(r) (solid lines) and its second derivative ’0 0(r)
(dashed lines) for both settings, compared to the unconfined case. (Reproduced with permission
from ref. [33]. Copyright 2009 Elsevier.)
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The minimal basis set that consists of the core and valence functions of an atom can be

calculated by solving Equation (2) with Vl(r) set to the free-atom radial potential. The

radial equations are solved in one dimension on a logarithmic radial grid, and the radial

functions so obtained are then orthonormalized by a simple Gram–Schmidt procedure.

A cubic spline interpolation is finally used to smooth the radial functions.
After the minimal basis set is ready, additional NAO basis functions are constructed

at different levels by the following strategy: (1) Define a large pool of ‘candidate’ radial

functions, including the radial functions of doubly positively charged free ions and

hydrogen-like radial functions for a potential z/r with z in the range 0.1� z� 20.

(2) Starting from the minimal basis set, each function in the pool of candidate functions is

added in turn; the radial function that gives the single largest improvement of a target total

energy is added to the original basis set. (3) The procedure is repeated until there is no

further significant total energy improvement.
With the optimization procedure described above, different tiers of basis sets can be

obtained for different levels of calculations.

2.2. Pseudopotential numerical atomic orbitals

Pseudo-atomic orbitals (PAOs) can be obtained in several ways. Here we focus on

SIESTA’s recipe since it is efficient and popular [42]. If a pseudopotential is used to

describe the ion–electron interaction in an atom, this atom is called a pseudo-atom. There

are two ways to construct the minimal (single-�) basis set in SIESTA. One is using the

eigenfunctions of a pseudo-atom within a spherical box, i.e. the simplest ‘hard-wall’

potential is used as the confining potential. In this way, a single parameter (DEPAO) that

describes the energy increase due to the confinement of the finite sphere can be used to

define the radii of different orbitals. It is found that a DEPAO between 100 and 200meV

typically leads to precision within the accuracy of current DFT functionals. The other way

[43] is to use a soft confinement potential [49,50] as:

VcutðrÞ ¼ Vo
e�ðrc�riÞ=ðr�riÞ

rc � r
ð4Þ

where ri is the inner radius where the soft confinement potential starts off, and rc is the

cutoff radius to ensure strict localization there. Vo is the prefactor of this soft confinement

potential. These parameters are optimized variationally to minimize the systems’ total

energy.
To obtain multiple-� basis sets, the best scheme so far is to add a numerical orbital

which has the same tail as the first-� orbital, �1�l ðrÞ, and continues smoothly towards the

origin as rl(al� blr
2) inside a ‘split radius’ rsl , i.e.

�2�l ðrÞ ¼
rlðal � blr

2Þ r5 rsl
�1�l ðrÞ r � rsl

�
ð5Þ

where rsl is determined by fixing the norm of �1�l ðrÞ in r � rsl ; it is found that 0.15 is a

reasonable value for the ‘norm’. Then al and bl are obtained by ensuring continuity and

differentiability at rsl . In practice, the �1�l � �
2�
l orbital is used to reduce the number of
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non-zero matrix elements in the same Hilbert space. In Figure 2, the double-� PAOs for
oxygen are plotted.

Polarization orbitals are those with an angular momentum lþ 1 to describe the
polarization of valence orbitals with an angular moment l. In SIESTA, the polarization
orbitals are obtained by an actual polarization of the pseudo-atom with a small electric
field. The lþ 1 orbital can then be exactly solved through comparison with first-order
perturbation theory. Based on exhaustive tests, the double-� plus polarization (DZP) basis
set has proved to be a basis set that can yield accurate results in most cases.

To demonstrate the efficiency of the SIESTA basis set, the energy differences per atom
compared with a converged plane-wave result were calculated using both LDA and GGA
functionals for two amino acids: glycine and alanine. Two different methods were used to
generate NAO basis sets: the SIESTA PAOs, up to DZP, and increasing eigenstates, up to
TZTP. It turns out that the SIESTA basis sets are more efficient than the atomic
eigenstates (Figure 3).

Recently, the SIESTA group proposed a method to control, in-depth, the range of the
basis sets by a single parameter [47] that allows us to monitor their convergence with the
range of basis sets in a simple and systematic way.

Figure 2. Confined pseudo-atomic orbitals for oxygen: (a) and (b) for s orbital, and (c) and (d) for p

orbital. Rc is the confinement radius obtained with DEPAO¼ 250meV. The original PAOs (�1�l ) are

represented with thinner lines. The split smooth functions (�2�l ) are plotted with thicker lines in (a)

and (c), while the resulting double-� orbitals (�1�l � �
2�
l ) are plotted with thicker lines in (b) and (d).

(Reproduced with permission from ref. [42]. Copyright 1999 Wiley.)
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3. Building the Hamiltonian

In mean field theories of electronic structure theory, there are two computationally
demanding tasks [51–53]: construction of the single-electron Hamiltonian (the Fock
matrix), which conventionally scales quadratically with molecular size [54], and updating
the density matrix, which is conventionally done by diagonalization, scaling cubically with
system size. The latter shows a very small prefactor and therefore it only becomes
important for very large systems. The construction of the Fock matrix involves two
computationally expensive parts: Coulomb and exchange terms.

For the Coulomb problem, there have been various effective linear scaling methods
introduced based on GTOs [55–60], such as the fast multipole method (FMM). With NAO
basis sets, the Coulomb term is calculated on a real-space grid [8], and this allows good

scaling with growing system size.
The exchange term is a functional of the density in DFT. But the computation of

electron repulsion integrals is required in Hartree–Fock theory and hybrid DFT methods,

such as in the popular B3LYP functional [61]. With the GTO basis set, several approaches
to reduce the computational scaling property of exact exchange evaluation have been
introduced [54,62–64]. For example, the ONX (order-N exchange) algorithm by Schwegler
et al. [64] employs traditional SCF density-weighted integral estimations of exchange
within a novel loop structure and LinK (Linear exchange K ) method [54] based on ONX
exploits the full permutational symmetry of the two-electron integrals. With NAOs, the
exchange term is more difficult to obtain [33,65,66]. In this section, we focus on our linear
scaling implementation in SIESTA [67].

Figure 3. [Colour online] Convergence with basis sets of SIESTA PAOs and eigenvalue-based PAOs
for glycine (top) and alanine (bottom). Energy differences per atom are relative to the converged
plane-wave result. (Reproduced with permission from ref. [27]. Copyright 2008 Institute of Physics.)
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3.1. Kohn–Sham DFT Hamiltonian

In the Kohn–Sham DFT scheme, the Hamiltonian can be written as:

H ¼ Tþ
X
I

V KB
I þ

X
I

V local
I ðrÞ þ V HðrÞ þ V XCðrÞ ð6Þ

where T is the kinetic energy operator, I is the atom index, V local
I ðrÞ and V KB

I are the local
and non-local parts [68] of the pseudopotential on atom I, VH is the Hartree potential
operator, and VXC is the exchange-correlation potential operator, which is local in pure
DFT, but is non-local in HF. In the SIESTA implementation, the Hamiltonian is
rewritten as:

H ¼ Tþ
X
I

V KB
I þ

X
I

V NA
I ðrÞ þ �V

HðrÞ þ VXCðrÞ ð7Þ

where the long-range local part of the pseudopotential is combined with the neutral-atom
potential, forming a screened ‘neutral-atom’ (NA) potential, VNA

I � Vlocal
I þ Vatom

I , and
�VH(r) is the electrostatic potential generated by ��(r) which is equal to �ðrÞ �

P
I �

atom
I ,

usually much smaller than �(r). In this Hamiltonian form, different terms are treated based
on the type of integrals. The first two terms are two-centre integrals. They can be
calculated in reciprocal space. After taking the Fourier transform, the kinetic matrix and
the non-local psodopotential elements can be written in the following form:

T�� ¼

Z
k2 ��ðkÞ �ðkÞe

�ikRdk ð8Þ

VKB
�� ¼

X
	

Z
 ��ðkÞ
	ðkÞe

�ikR1dkvKB
	

Z

	ðkÞ

� �ðkÞe
�ikR2dk ð9Þ

where  �(k) and  �(k) are basis functions in their Fourier space, 
	(k) is KB projector in
its Fourier space, and 	 denotes all the KB projectors that overlap with  � and  �. With
localized numerical atomic orbitals, the maximum number of each atom’s neighbour is
constant, so two-centre integration can be performed in an O(N ) operation.

The remaining three terms are three-centre integrals, which are calculated on a
real-space grid. VNA

I is tabulated as a function of distance to atom I, and it can be
evaluated at any desired grid point by interpolation. �VH(r) is calculated by solving
Poisson’s equation. The last term, VXC(r), can be easily calculated in pure density
functional forms. Therefore, for functionals without exact exchange, we have the total grid
potential V(r)¼VNA

þ �VH(r)þVXC(r). At every grid point, VðrÞ �� �Dv can be calcu-
lated for the orbital pair ( ��, �) which is not zero at that point (Dv is the volume per grid
point). It is then added to the Hamiltonian matrix element H��.

3.2. Hartree–Fock type exchange

The widely used functionals based on LDA or GGA are sometimes not accurate enough
[69]. A possible remedy is adding non-local Hartree–Fock type exchange (HFX) into local
or semi-local density functionals. We have presented an accurate strategy for the efficient
HFX calculation in real-space with localized NAO basis sets implemented in the SIESTA
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package [67]. In LDA and GGA, VXC(r) is the same in every unit cell. However, in the

HFX case, VXC(r, r0) is non-local, and the HFX potential matrix element is defined as

½V X�
Q
�� ¼ �

1

2

X
��

X
N

�N��
X
H

½ð
0�

H
� j


Q
� 


HþN
� Þ� ð10Þ

where Q, H, and N represent different unit cells, and summations of H and N run for all

unit cells in the extended cell. The density matrix element �N�� is computed by an

integration over the Brillouin zone (BZ)

�N�� ¼
X
j

Z
BZ

c��, jðkÞc�, jðkÞð�F � �j ðkÞÞe
ik�Ndk ð11Þ

where  is the step function, �F is the Fermi energy and �j(k) is the j-th eigenvalue at

point k.
In order to calculate the electron repulsion integrals (ERIs) in Equation (10) in a

real-space grid, we first calculate

V�0, �N ðr
0Þ ¼

Z

0�ðrÞ


N
� ðrÞ

jr� r0j
dr ð12Þ

which is obtained by solving Poisson’s equation in real space with free boundary

condition, using the interpolating scaling functions (ISF) method [70]. The next step is an

integration also in real space

ð
0�

N
� j


Q
� 


H
� Þ ¼

Z
V�0, �Nðr

0Þ
Q� ðr
0Þ
H� ðr

0Þdr0: ð13Þ

The whole scheme is summarized in Figure 4.
We have studied the one-dimensional polymer trans-polyacetylene as a benchmark

for extended systems. We optimize its geometry with CRYSTAL 06, using a B3LYP

functional and 6-31G** basis set. With this optimized geometry, we calculate its band

structure. The single-zeta (SZ), double-zeta (DZ), and double-zeta plus polarization (DZP)

basis sets are employed with our code and the STO-3G, 6-31G, and 6-31G** basis sets are

employed with CRYSTAL 06. We sampled the Brillouin zone by 1	 1	 200 special

k-points using the Monkhorst–Pack scheme. The five highest occupied bands, along with

the three lowest conduction bands, are plotted in Figure 5. We can see that the agreement

between the numerical and analytical basis sets is good. The CRYSTAL 06 band structure

has been rigidly shifted to make the valence band edges coincide when compared with our

Figure 4. [Colour online] The scheme to calculate ERIs within NAOs. (Reproduced with permission
from ref. [67]. Copyright 2010 American Chemical Society.)
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result, since the absolute values of the band energies are generally different for different
approaches owing to the different treatment of the Coulomb series. A bigger basis set leads
to better agreement between our results with those obtained with a Gaussian basis set in
the CRYSTAL 06 package.

4. Linear scaling construction of the density matrix

After the Hamilton matrix is built, the density matrix can be obtained by diagonalizing the
Hamilton matrix, which has a computational cost scaling of O(N3). In 1991, Yang [71]
proposed a linear scaling method for this purpose. Now there have been many different
approaches for O(N ) electronic structure calculations. Below we briefly review three types
of O(N ) algorithms: direct methods, variational methods, and purification methods. The
detailed description and comparison of the first two classes of methods can be found in
Goedecker’s review [5]. The last one tends to be more efficient when implemented with
NAOs [72–74] and it will be described in more detail in this review.

4.1. Direct methods

The direct approaches are featured by direct calculation of density matrix elements using
various approximations, which include the divide-and-conquer (DC) method [71,75,76],
the Fermi operator expansion (FOE) method [77–79], and the kernel polynomial method
(KPM) [80].

In the DC method proposed by Yang [71], a system is divided into disjoint subsystems.
Then the truncation of the density matrix is applied, which leads to a linear scaling
calculation of the band structures.

Figure 5. [Colour online] Band structure of trans-polyacetylene calculated with the B3LYP
functional using (a) SZ, (b) DZ, and (c) DZP basis sets. (Reproduced with permission from ref. [67].
Copyright 2010 American Chemical Society.)
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At a finite temperature, the density operator can be expressed as a Fermi–Dirac
distribution function of the Hamiltonian. The Fermi–Dirac distribution f (H ) can then be
approximated by a polynomial function of H, such as a Chebyshev polynomial
representation. Therefore, only sparse matrix multiplications are required to get the new
density matrix, which scales linearly [78,79].

The kernel polynomial method, developed by Voter and coworkers [80], is to convolute
the density of states (DOS) and the step function with the kernel polynomial, which is
similar in concept to the FOE method.

4.2. Variational methods

The second class of O(N ) methods is based on variational approaches, including the
density matrix minimization (DMM) method [81–83], the penalty function-based energy
minimization approach [7,84], variational approaches using localized orbitals minimiza-
tion (LOM) [85–88], and the absolute energy minimum approach [89].

In 1993, Li, Numes, and Vanderbilt (LNV) proposed an algorithm to minimize the
grand potential �¼ 2Tr[(3�2� 2�2)(H��)] instead of minimizing the energy E directly,
where � is the density matrix. The grand potential includes McWeeny’s purification
transformation [90] to impose the idempotency constraint (�2¼ �). Then the conjugate-
gradient method is used to minimize the DMM functional. This method is based on a
variational solution for the density matrix, which is truncated to zero beyond a real-space
radius, so the computational time scales linearly with system size. The DMM method has
been successfully implemented for orthogonal tight-binding Hamiltonians [81].

The CONQUEST group [91–99] has implemented the LNV scheme into DFT
calculations. They express �(r, r0) as

�ðr, r0Þ ¼
X
i	, j�

�i	ðrÞKi	, j��j�ðr
0Þ

ð14Þ

where �i	(r) is a support function for atom i, and the multiple support functions on the
same atom are labelled with 	. The support functions can be represented in terms of either
the quantitative basis set using blip functions or smaller sized NAOs for which systematic
convergence is usually significantly harder. Ki	,j� is the density matrix in the basis of
support functions. The support functions are non-orthogonal, and the associated overlap
matrix is:

Si	, j� ¼

Z
dr�i	ðrÞ�j�ðrÞ: ð15Þ

K can be written in terms of an auxiliary density matrix L,

K ¼ 3LSL� 2LSLSL ð16Þ

to achieve idempotency. The ground state is obtained by minimizing the total energy with
respect to support functions and to the auxiliary density matrix (L) under the constraint of
a fixed number of electrons. Using their extensively optimized sparse matrix multiplication
algorithm [100], the CONQUEST method has demonstrated the possibility of DFT
calculations to treat millions of atoms [91].
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Kohn [7] and later Haynes and Payne [84] have imposed the condition of idempotency
of the density matrix by a penalty function and then used the variational scheme to
determine the density matrix by energy minimization.

Mauri et al. [85,86] used an unconstrained variational approach to minimize the energy
functional with respect to the set of localized orbitals, and this leads to an approximate
ground state energy. Ordejón et al. [87,101] also proposed an unconstrained minimization
scheme by introducing an energy functional,

E ¼ 2
XN
i¼1

Hii �
XN
i, j¼1

ðSij � �ijÞHji

" #
ð17Þ

and then the conjugate gradient scheme can be used to minimize the energy functional.
The calculation of the energy functional scales linearly with system size by introducing
truncated Wannier-like wavefunctions. But this scheme suffers from the problem of
multiple local minima in numerical calculations [101].

4.3. The purification methods

The third class of O(N ) algorithm is purification methods, including the trace-preserving
canonical purification scheme of Palser and Manolopoulos (PM) [102], trace-correcting
purification (TC) [73], and the trace resetting density matrix purification approach (TRS)
[72]. All the purification algorithms described above do not need the input of the chemical
potential, and they are very efficient when no prior knowledge of the chemical potential is
available [5,72,73,103,104].

The first purification algorithm for density matrix construction was proposed by Palser
and Manolopoulos [102]. This method works with a predefined occupation and does not
need the input or adjustment of the chemical potential. They start with an estimated initial
density matrix, �0, which has a trace equal to the occupation number. Then,
trace-conserving spectral projections are performed, until the density matrix �n converges
to the correct density matrix. The canonical PM scheme is given in pseudocode
Algorithm 1.

Algorithm 1: The PM algorithm, where Ne is the number of electrons, Nb denotes the
number of basis sets, "min(H ) denotes the minimal eigenvalue of the Hamiltonian matrix
H, and "max(H ) denotes the maximum eigenvalue of the Hamiltonian matrix H.

subroutine PM(H, �,Ne,Nb)
estimate "min(H ), "max(H )

	 ¼ 1
Nb

minð Ne

"max��
, Nb�Ne

��"min
Þ

�¼Ne/Nb, �¼Tr[H ]/Nb

�0¼ 	(�I�H )þ�I
while Error4ErrorLimit do

cn ¼
Tr½�2n��

3
n�

Tr½�n��2n�

if cn� 1/2 then

�nþ1 ¼
ð1þcnÞ�

2
n��

3
n

cn
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else

�nþ1 ¼
ð1�2cnÞ�nþð1þcnÞ�

2
n��

3
n

1�cn
end

estimate Error
end

�¼ �n

The PM scheme performs excellently compared with DMM methods [74,102].

However, the method is inefficient at low and high partial occupancies. As a result,

Niklasson [73] proposed the TC algorithm. Its second-order form is called the

second-order trace-correcting purification (TC2) method:

�nþ1ð�nÞ ¼
�2n Trð�n � NeÞ

2�n � �
2
n Trð�n 5NeÞ:

�
ð18Þ

The TC2 scheme is described in pseudocode Algorithm 2.

Algorithm 2: The TC2 algorithm, where Ne is the number of electrons, "min(H ) denotes

the minimal eigenvalue of the Hamiltonian matrix H, and "max(H ) denotes the maximum

eigenvalue of the Hamiltonian matrix H.

subroutine TC2(H, �,Ne)
estimate "min(H ), "max(H )

�0¼ ("maxI�H )/("max� "min)
while Error4ErrorLimit do
if Tr[�n]�Ne5 0 then

�nþ1 ¼ 2�n � �
2
n

else

�nþ1 ¼ �
2
n

end

estimate Error
end

�¼ �n

The TC2 method has an improved performance for systems with high or low filling;

however, the TC2 method does not have the ability to deal with degeneracy and fractional

occupancy. As a result, Niklasson [72] then developed the TRS method, and its

fourth-order form (TRS4) is described by Algorithm 3.

Algorithm 3: The TRS4 algorithm, where Ne is the number of electrons, �min is 0, and

�max is 6, F(x)¼ x2(4x� 3x2), G(x)¼ x2(1� x)2, "min(H ) denotes the minimal eigenvalue

of the Hamiltonian matrix H, and "max(H ) denotes the maximum eigenvalue of the

Hamiltonian matrix H.

subroutine TRS4(H, �, Ne)
estimate "min(H ), "max(H )
�0¼ ("maxI�H )/("max� "min)

while Error4ErrorLimit do

�n ¼
Ne�Tr½Fð�nÞ�
Tr½Gð�nÞ�
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if �n4 �max then

�nþ1 ¼ 2�n � �
2
n

else if �n5 �min then

�nþ1 ¼ �
2
n

else

�nþ1¼F(�n)þ �nG(�n)
end

estimate Error
end

�¼ �n

We recently proposed some linear scaling methods to deal with magnetic systems. We

found that the TC2 scheme can be extended to the spin polarized case simply by

calculating the alpha and beta electrons separately. We denote this method as PSUTC2,

and such a method needs the predetermined spin multiplicity. For magnetic systems

without knowledge on their spin multiplicity, we developed the spin-unrestricted TC2

(SUTC2) method [28].

Algorithm 4: The SUTC2 algorithm, where Ne is the number of electrons, "min(H )

denotes the minimal eigenvalue of the Hamiltonian matrix H, and "max(H ) denotes the

maximum eigenvalue of the Hamiltonian matrix H. (From [28].)

subroutine SUTC2(H	,H�, �	, ��,Ne)
estimate "min(H	), "max(H	), "min(H�), "max(H�)
"max¼max("max(H	), "max(H�))
"min¼min("min(H	), "min(H�))
�	,0¼ ("maxI�H	)/("max� "min)
��,0¼ ("maxI�H�)/("max� "min)
while Error4ErrorLimit do
if Tr[�	,nþ �	,n]�Ne5 0 then

�	,nþ1 ¼ 2�	,n � �
2
	,n

��,nþ1 ¼ 2��,n � �
2
�,n

else

�	,nþ1 ¼ �
2
	,n

��,nþ1 ¼ �
2
�,n

estimate Error
end

�	¼ �	,n
��¼ ��,n

In the SUTC2 method, we first get the initial density matrices �	,0 and ��,0 with all their

eigenvalues in the range [0, 1]. Then �	,n and ��,n are updated based on the sum of the

traces. According to the Aufbau principle, the monotonicity of the purification

polynomial leads to the correct occupations. The SUTC2 algorithm is listed in

Algorithm 4.
In the implementation of purification algorithms, the key to a linear scaling is the use

of sparse matrix operations. Saravanan et al. [105] showed that the multi-atom-blocked

sparse matrix multiplications can be much faster than a standard element-by-element
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sparse matrix package and also more efficient than atom-blocked sparse matrix algebra.
The blocking scheme benefits from the use of highly optimized level-three basic linear
algebra subroutines (BLAS) for large submatrix multiplications. So the blocked
compressed sparse row (BCSR) [105–107] data structure with multi-atom blocks is very
efficient for sparse matrix computations.

The BN(5, 5) nanotube with a boron atom substituted by a carbon has been chosen as a
test case. Both the PSUTC2 and SUTC2 methods were tested and found to work well.
With the PSUTC2 method, the magnetic moment of this system is fixed to 1�B [108].
As shown in Figure 6, the PSUTC2 method is 25% faster than the SUTC2 method.

Although there are no unfilled shells in spin-unrestricted HF theory, as proved by Bach
et al. [109], for spin-unrestricted DFT methods, sometimes fractional occupation is
possible. In these cases PM [102] or fourth-order trace resetting (TRS4) [72] purification
can be extended to the spin-unrestricted form in a similar way as in SUTC2.

5. Beyond the total energy

After the SCF process, we may want to get information about canonical or localized
orbitals. It is very desirable to get such electronic properties beyond the total energy also in
linear scales. Below we focus on O(N ) calculations of frontier molecular orbitals and
maximally localized Wannier functions (MLWFs).

5.1. O(N) calculation of band edge states and doped semiconductors

Many linear scaling methods can only give the density matrix or the localized Wannier
functions, and cannot provide the canonical wavefunctions and corresponding eigen-
values. Those states near the Fermi level are often of special interest. As a result, we have
developed an O(N ) method to deal with the band edge states using the Lanczos method
[31]. For a closed-shell system, in the canonical molecular orbital representation, the
density matrix � and Hamiltonian H are diagonal matrices of the following forms:

� ¼ diagð1, 1, . . . , 1, 0, 0, . . . , 0Þ, H ¼ diagð�1, �2, . . . , �Ne=2, �Ne=2þ1, . . . , �Nb
Þ ð19Þ

where Ne is the number of electrons of this system and Nb is the number of basis functions.
Without loss of generality, the order of � can be assumed to be:

�14�24 � � �4�Ne=24�Ne=2þ14 � � �4�Nb
: ð20Þ

Then, �Ne=2 and �Ne=2þ1 are the HOMO and LUMO energies, respectively. The product of �
and H can be easily found:

�H ¼ H� ¼ diagð�1, �2, . . . , �Ne=2, 0, . . . , 0Þ ð21Þ

and we can shift the Hamiltonian H to Hþ �I(�4 0) so that �þ �Ne=2 4 0, and �þ �Ne=2 is
the largest eigenvalue of �(Hþ �I ). The parameter � can be set to a large positive value,
and in practice, it is usually reliable to set it as 1.0Ry. The largest eigenvalue and its
corresponding eigenvector of �(Hþ �I ) can be computed easily using the O(N ) Lanczos
method. A similar approach can also be applied for LUMO [31].

The scheme described above is for the orthogonal basis, and can be illustrated in
Figure 7(a). If an NAO basis set is used, the non-orthogonal basis set should generally be
first convert to an orthogonal basis set using Cholesky decomposition or the Löwdin
decomposition of the overlap matrix S.
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Figure 6. CPU time per SCF cycle for a carbon-doped BN(5, 5) nanotube using the PSUTC2
method and the traditional diagonalization method with different basis sets. (Reproduced with
permission from ref. [28]. Copyright 2005 American Institute of Physics.)
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It is also possible to calculate the band edge state in a non-orthogonal basis without
transforming to an orthogonal basis. We use the suffix ‘ao’ for non-orthogonal atomic
orbital basis sets. As �ao(Haoþ �IS ) have the same eigenvalues as �(Hþ �I ), the largest
eigenvalue of �ao(Haoþ �IS ) will be �HOMOþ �.

Based on the scheme described above, we have further developed an O(N ) algorithm to
deal with doped semiconductors (illustrated in Figure 7b). In each cycle, the valence band
and the doping state are calculated respectively. The valence band density matrix is
obtained using traditional O(N ) methods, such as TC2. Other defective bands are
calculated using the O(N ) method band edge states as mentioned above.

This O(N ) method for doped semiconductors has been used to treat large-radius BN
nanotubes with an isolated adsorbed H atom using huge supercells. Three BN nanotubes

Figure 7. Schematic illustration of (a) the O(N ) method for calculating the HOMO state.
The program flow for the LUMO calculation is similar. (b) The O(N ) method for dealing with
doped semiconductors. Here ‘density matrix’ is abbreviated to ‘DM’. (Reproduced with permission
from ref. [31]. Copyright 2007 American Institute of Physics.)
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are considered: a BN(8, 0) nanotube simulated using a supercell with 320 atoms, a
BN(15, 0) nanotube simulated using a supercell with 720 atoms, and a BN(13, 2) nanotube
with 796 atoms in the unit cell. The distribution of the acceptor state and the highest
orbital of the valence band are shown in Figure 8. Clearly, the acceptor state is a relatively
localized state around the adsorbed H atom, which agrees with the result reported by Wu
et al. [110,111]. However, the highest orbital of the valence band is delocalized and mainly
contributed by N 2pz orbitals. The calculated acceptor levels (i.e. the energy difference
between the acceptor state and the top of the valence band) introduced by an isolated H
atom are 1.184, 1.557, and 1.563 eV for BN(8, 0), BN(15, 0), and BN(13, 2) nanotubes,
respectively. Thus the position of the defect level is closer to the top of valence bands for
smaller-radius BN nanotubes, but does not depend significantly on the chirality.

5.2. Maximally localized Wannier functions

Wannier functions [112] are a kind of local orbitals, and are very useful in the study of
chemical bonding, dielectric properties, excited electronic states, electron transport, and
many-body correlations in materials. Marzari and Vanderbilt have proposed a method
[113] to obtain a unique set of MLWFs. Using MLWFs, we can get an enhanced
understanding of chemical bonding properties and electric polarization. We can also use
the MLWFs as a minimal basis for a variety of purposes, such as linear scaling calculations
[114], construction of effective Hamiltonians for the study of ballistic transport [115,116],
strongly correlated electrons [117–119], self-interaction corrections, metal–insulator
transitions [120], and photonic lattices [121].

After the self-consistent ground state calculation, we found that the MLWFs can be
calculated with the numerical atomic orbital basis in a linear scaling way by three O(N )
steps [29]. First, using the density matrix obtained above, we can find a set of linearly

Figure 8. (a) The acceptor state and (b) the highest orbital of the valence band of a BN(13, 2)
nanotube with an isolated adsorbed H atom. The insets show the enlarged plots around the adsorbed
H atom. (Reproduced with permission from ref. [31]. Copyright 2007 American Institute of Physics.)
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independent non-orthogonal orbitals which span the occupied manifold,

�	 ¼ �j’	i ¼
X
�

ð�S Þ�,	j’�i ð22Þ

where � and S denote the density matrix and overlap matrix, respectively, and ’	 and ’�
are atomic orbitals. Second, a modified Löwdin orthogonalization is used to orthogonalize
these non-orthogonal orbitals. Finally, the Jacobi rotation scheme is utilized to maximally
localize the orbitals.

The method has been applied to calculate the MLWFs of a BN(5, 5) armchair
nanotube. Figure 9 shows four MLWFs of the BN(5, 5) nanotube computed using a
supercell containing 200 atoms. Two different basis sets, SZ and DZP, are employed in the
calculations using the new O(N ) method, and only the SZ basis set is used for the
traditional method. The CPU time is shown in Figure 10. We clearly see the perfect linear
scaling behaviour of this new method, and the traditional method displays a nearly O(N3)
scaling as expected. The computing saving of this method with respect to the traditional
method is dramatically large, especially when the size of systems exceeds 400 atoms.

6. Response theory

Response theory is used to compute both dynamic and static response properties. The
former can be computed by propagating the density matrix in the time domain [122,123],

Figure 9. [Colour online] Four MLWFs around a nitrogen atom of BN(5, 5) nanotubes. These
MLWFs are calculated using the supercell containing 200 atoms with the DZP basis set.
(Reproduced with permission from ref. [29]. Copyright 2006 American Institute of Physics.)
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and then performing a convolution to obtain the spectral response. The static response
properties, such as, the polarizability, nuclear magnetic resonance, Raman intensities,
vibrational frequencies, and the magnetic susceptibility [124,125], are conventionally
obtained by solving the coupled-perturbed self-consistent-field (CPSCF) equations.
Several algorithms have been proposed for solving the CPSCF equations that may be
capable of achieving O(N ) scaling [126,127] by avoiding both eigenproblem solution and
integral transformation. But these methods only give an implicit solution of the CPSCF
equation [125]. On the other hand, the O(N ) density-matrix perturbation theory (DMPT)
[34] method provides explicit construction of the derivative density matrix. TC2
purification provides a possible recursive way to construct the derivative density matrix.

6.1. Density-matrix perturbation theory

To get the response properties, we need to calculate the density matrix derivatives
with respect to a perturbation. We assume a perturbation expansion of the Hamiltonian
H [128]:

H ¼ H ð0Þ þ �H ð1Þ þ �2H ð2Þ þ � � � : ð23Þ

This generates the corresponding density matrix perturbed sequence in its intermediates
form XðmÞn :

Xn ¼ Xð0Þn þ �X
ð1Þ
n þ �

2Xð2Þn þ � � � ð24Þ

where the mth-order XðmÞn can be found in the following way:

X
ðmÞ
nþ1 ¼

Xm
i¼0

XðiÞn X
ðm�iÞ
n TrðXð0Þn Þ � N

2XðmÞn �
Pm

i¼0 X
ðiÞ
n X
ðm�iÞ
n TrðXð0Þn Þ5N:

8><
>: ð25Þ

Figure 10. [Colour online] Total CPU time for calculating MLWFs of a BN(5, 5) nanotube using the
linear scaling method or the traditional Jacobi rotation method which does not take advantage of the
localization property of the orbitals. In the case of the new O(N ) method, both SZ and DZP basis
sets are used. The calculations using the traditional method are performed using the SZ basis set.
(Reproduced with permission from ref. [29]. Copyright 2006 American Institute of Physics.)
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Then the mth-order density matrix derivatives are given by

�ðmÞ ¼ lim
n!1

XðmÞn ð26Þ

and corresponding density matrix is

� ¼ �ð0Þ þ ��ð1Þ þ �2�ð2Þ þ � � � : ð27Þ

The initial matrices X
ð0Þ
0 and X

ðmÞ
0 are computed as

X
ð0Þ
0 ¼

�max �H ð0Þ

�max � �min
ð28Þ

X
ðmÞ
0 ¼

�H ðmÞ

�max � �min

ð29Þ

where �max and �min are the maximal and minimal eigenvalues of the unperturbed
Hamiltonian H(0), respectively.

For example, to first order, the DMPT equations are:

X
ð1Þ
nþ1 ¼

Xð1Þn Xð0Þn þ Xð0Þn Xð1Þn TrðXð0Þn Þ � N

2Xð1Þn � Xð1Þn Xð0Þn � Xð0Þn Xð1Þn TrðXð0Þn Þ5N

(
ð30Þ

where the Xð0Þn is found in the following cycle:

X
ð0Þ
nþ1 ¼

ðXð0Þn Þ
2 TrðXð0Þn Þ � N

2Xð0Þn � ðX
ð0Þ
n Þ

2 TrðXð0Þn Þ5N:

(
ð31Þ

These equations provide the base for computing the density-matrix response explicitly
and rapidly. This orthogonal form can be generalized to non-orthogonal form by
including basis-set-dependent perturbations [128]. The DMPT method has been used for
the computation of the high-frequency molecular dielectric tensor [125] and response
properties beyond second order [129] based on GTOs.

6.2. Electric field perturbation in solids by DMPT

It is well known that a uniform electric field in periodic systems is notably difficult to treat
since the position operator is ill-defined in periodic boundary conditions. We proposed a
method to address this issue using the DMPT approach [30]. First, we discovered that �(1)

is only determined by the sum of the non-diagonal parts of the first-order derivative
Hamiltonian matrix, i.e.

H ð0Þ�ð1Þ � �ð1ÞH ð0Þ ¼ �ð0ÞH ð1Þnd �H
ð1Þ
nd �
ð0Þ ð32Þ

where H
ð1Þ
nd ¼ H

ð1Þ
VC þH

ð1Þ
CV is the non-diagonal part of the first-order derivative

Hamiltonian matrix, and they are computed by the projector operators PV and PC:

PV ¼ �
ð0Þ, PC ¼ I� �ð0Þ ð33Þ

H
ð1Þ
VC ¼ PVH

ð1ÞPC, H
ð1Þ
CV ¼ PCH

ð1ÞPV ð34Þ

where �(0) is the zero-order ground state orthogonal density matrix.
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For electric field � along the � direction,H(1)
¼ er�þ @V

Hxc/@��, andH
ð1Þ
nd is well-defined

since PCr�PVþPVr�PC¼ [r�, �
(0)]�(0)þ �(0)[�(0), r�] , and [�(0), r�] is well-defined. As a

result, H
ð1Þ
nd instead of H(1) is used as the perturbation operator in DMPT. When �(1) is

obtained using Equation (30), we can get the first-order variation of the electric

polarizability:

@P	
@��
¼ �

2e

�0
Trð�ð1Þr	Þ; ð35Þ

the factor of 2 is from spin degeneracy, and �0 is the unit-cell volume.
The polarizability of a BN(8, 0) nanotube has been calculated using the O(N ) DMPT

method. The CPU time is shown in Figure 11, which clearly shows perfect linear-scaling

behaviour.
The Born effective charge is defined as the change in macroscopic polarization P�

along the direction � upon the collective nuclear displacements of atoms I along direction

	 under the condition of zero macroscopic electric field, times the unit-cell volume �0:

ZI,	� ¼ �0
@P�
@RI,	

����
�¼0

: ð36Þ

Using the traditional Clausius–Mossotti (CM) relation, @P/@RI can be calculated as:

@P

@RI
¼ �

e

�0
	

Z
r
@nðrÞ

@RI
dr ð37Þ

where n is the electronic density. For molecular orbital  i and atomic basis function ��,
we have

n ¼ 2
Xocc
i

 i i ð38Þ

 i ¼
X
�

c�i��: ð39Þ

Figure 11. Total CPU time for computing the polarizability of a BN (8, 0) nanotube using the O(N )
DMPT method. The electric field is along the axis direction. (Reproduced with permission from ref.
[30]. Copyright 2006 American Physical Society.)
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Using the above equations, we get:

@n

@RI
¼
X
��

4����v
@��
@RI
þ 2

@���
@RI

����

� �
ð40Þ

where ��� is a density matrix element:

��� ¼
Xocc
i

c�ic�i: ð41Þ

As a result, when @���/@RI is calculated by DMPT, we can get the Born effective charge
using Equation (36).

We note that the CM method for calculating the difference of electronic polarization
between two states is useful for large systems, although it does not work well for systems
with small unit cells where one may resort to the Berry-phase method [130,131].
Amorphous SiO2 with a realistic 648-atom model generated by Tafen and Drabold
[132,133] has been studied. The calculated average isotropic Born charge for Si is 3.29,
which is a little larger than that for a 72-atom model (3.18) [134].

7. Conclusions and outlook

In this review, we have described the O(N ) algorithms ranging from ground state
calculations to response properties with NAO basis sets. Two kinds of representative NAO
construction methods have been introduced. Both methods lead to strictly truncated
NAOs by applying confining potentials. Based on the locality of NAOs, the Hamiltonian
and density matrix will be sparse, which provides a possibility for linear scaling.

The strong demand of linear scaling methods comes from a various fields, especially
nanomaterials and biochemistry. For nano- and biosystems, calculation of the total
energy, optimization of the structure, and analysis of the electronic properties usually need
to be handled using O(N ) approaches [91]. With stable linear scaling methods,
computational characterization of complex systems and theoretical design of new
functional materials will play a more and more important role in modern physical sciences.

Many O(N ) algorithms have been implemented based on NAOs, especially with
purification approaches. However, there is still much room for improving these methods in
terms of efficiency as well as accuracy. For example, the current available O(N ) algorithms
for metallic systems are inefficient. In addition, conventional DFT theory suffers from the
self-interaction problem, and hybrid functionals [61,135] that mixes some exact exchange
counteract this effect. HFX can also serve as a starting point for the implementation of
MP2 and other correlated methods for large systems [136–146]. Therefore, efficient HFX
calculations are strongly pursued in the DFT community using NAO basis sets. However,
calculating HFX with NAO basis sets is still very time consuming [17,18,67]. Better
algorithms which provide a good balance between accuracy and efficiency are urgently
needed.
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[51] J. Almlöf, K. Faegri Jr, and K. Korsell, J. Comput. Chem. 3, 385 (1982).
[52] D. Cremer and J. Gauss, J. Comput. Chem. 7, 274 (1986).

[53] M. Häser and R. Ahlrichs, J. Comput. Chem. 10, 104 (1989).
[54] C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663 (1998).
[55] C. A. White and M. Head-Gordon, Chem. Phys. Lett. 230, 8 (1994).

[56] C. A. White, B. G. Johnson, P. M.W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 253, 268
(1996), and references therein.

[57] C. A. White and M. Head-Gordon, J. Chem. Phys. 105, 5061 (1996).
[58] M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271, 51 (1996).
[59] M. Challacombe, E. Schwegler, and J. Almlöf, J. Chem. Phys. 104, 4685 (1996).
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[142] S. J. Nolan, M. J. Gillan, D. Almlöf, N. L. Allan, and F. R. Manby, Phys. Rev. B 80, 165109

(2009).
[143] P. Y. Ayala, K. N. Kudin, and G. E. Scuseria, J. Chem. Phys. 115, 9698 (2001).
[144] J.-Q. Sun and R. J. Bartlett, J. Chem. Phys. 104, 8553 (1996).

[145] S. Hirata, R. Podeszwa, M. Tobita, and R. J. Bartlett, J. Chem. Phys. 120, 2581 (2004).
[146] B. Doser, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 130, 064107

(2009).

International Reviews in Physical Chemistry 691

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


